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1. Introduction1 

Differential privacy is a formal mathematical model of privacy [1]. Informally, differential 

privacy requires that the output of an analysis should reveal (almost) no information 

specific to any individual within that dataset, where by “specific” we mean information 

that could not be inferred about the individual from statistical facts about other 

individuals. Differential privacy was invented just twelve years ago, yet it has already 

seen significant adoption first in academia, then by leading government agencies and 

technology companies. Its appeal comes from two primary characteristics: a formally 

defined strong privacy protection and a measure of privacy leakage across multiple 

statistical releases. These characteristics are especially important in today’s world, 

where more sensitive data is created than ever, more data releases are made than 

ever, new privacy attacks are being discovered, and existing attacks are steadily 

strengthening.  

 

One specific motivating factor for the adoption of differential privacy has been the 

discovery of a new, serious type of attack called a reconstruction attack. In a 

reconstruction attack, an attacker is able to use statistics released about a sensitive 

dataset to infer with high accuracy a significant portion of the dataset itself. 

Reconstruction attacks hence cast serious doubts on the ability of traditional statistical 

disclosure control (SDC) methods2 to adequately protect systems that release 

aggregate statistics3. The US Census recently reported “serious vulnerabilities” to 

reconstruction attacks in its 2000 and 2010 Census data releases, and consequently 

has designed a differentially private system for the 2020 Census [4]. This 

demonstrates not only that these attacks, formerly considered primarily a theoretical 

risk, are of real concern in practice but also that differential privacy might prove to be 

a suitable defence.  

 

Differential privacy is still a relatively young field of research and users are still learning 

how to apply it effectively in practice. Difficulties in transitioning from research to 

practice include limited experience in managing differential privacy’s parameters and 

achieving a suitable level of privacy without affecting the quality of the analysis (a 

problem referred to as the “privacy-utility trade-off”). However, data privacy 

researchers continue to find improvements to differentially private algorithms, with 

state of the art approaches being developed for a wide variety of analyses. 

 

Organisations that release sensitive data should assess the impact of traditional and 

new privacy attacks, and evaluate whether differential privacy is a suitable and 

beneficial new defence. Differential privacy is particularly well-suited to the use case 

of releasing statistics about national populations to the public, because differentially 

                                                
1 The authors would like to thank the Privitar team, especially Guy Cohen and Dr Jason McFall, for 
their many helpful comments and edits. 
2 For an introduction to SDC methods, see [2]. 
3 Reconstruction attacks (also referred to as blatant non-privacy) were introduced in [3]. 
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private algorithms perform best in use cases with pre-determined statistics, large 

sample sizes and requirements for measurable, transparent, and comprehensive 

privacy controls. This article aims to inform statisticians, data analysts, and relevant 

policy makers about the motivation behind differential privacy and its privacy 

guarantees, and when, why, and how to incorporate differential privacy into projects 

that involve releasing statistics about sensitive data. 

 

What is differential privacy? Differential privacy is a formal privacy model with 

associated methods for limiting statistical disclosure and controlling privacy risk. 

Differential privacy is not a specific data release method, but rather a definition, or a 

standard, that specifies a particular requirement that data release methods may or 

may not satisfy. If a data release method satisfies the requirement, then it would 

protect an individual’s information essentially as if his or her information were not used 

in the analysis at all [5]4. This is a strong assurance to individuals that information that 

is specific to them will not be learned from their inclusion in the dataset, where 

“specific” refers here to information that cannot be learned about the individual by 

examining other individuals’ information. There are many differentially private data 

release techniques, many of which involve releasing aggregate statistics perturbed 

with random noise. During the computation of the release, noise is added in such a 

way to provide privacy while maximising accuracy of results. Differential privacy is a 

characteristic of all these techniques, not a specific technique itself.  

2. What motivated the development of differential privacy? 

Traditional SDC methods were devised for a data ecosystem very different from that 

of today. Computing power is increasing, and more, richer, data is being collected and 

made publicly available. Simultaneously, new attack methodologies are being 

developed, many of which exploit weaknesses in the protection provided by traditional 

methods. These trends, which are likely to continue, mean that not only are new 

privacy attacks becoming possible, but existing attacks are becoming stronger. They 

highlight a need for a fresh, rigorous, look at privacy.  

2.1 The world is becoming richer in data 

In modern society, every individual leaves an extensive trail of potentially sensitive 

data. Whilst government agencies still collect traditional data about individuals, like tax 

and census data, on top of this there are several new sources of sensitive data. For 

example, mobile phones, inseparable from their users, log “a detailed chronicle of a 

person’s physical presence compiled every day, every moment, over several years” 

[6]. Mobile phone location data is already being captured and used by Transport for 

                                                
4 “Essentially” here means that the outcome distribution (i.e. the probability of each given outcome) of 
the differentially private analysis would be almost the same whether the individual’s information would 
or would not be used. That is, no outcome would change in probability by very much. The exact 
measure of difference is part of the formal definition of differential privacy and is presented in Section 
4. 
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London and usage of this type of data will likely be adopted more broadly in coming 

years [7]. Relatedly, wearable devices such as fitness trackers are increasingly being 

recognised as posing privacy risks [8]. The devices we carry with us do not reveal only 

our locations; social media providers collect detailed usage information such as 

scrolls, swipes, and clicks in apps and websites, and large technology and advertising 

companies are building detailed pictures of our browsing and purchasing habits via 

the third-party web tracking ecosystem. The scale of this data collection is enormous: 

as of Q1 2018 there were 2.13 billion people on Facebook alone [9]. As another 

example, Internet of Things (IoT) data from new technologies, such as smart homes 

and smart meters, contains highly detailed energy usage information that can reveal 

lifestyle habits. Any of these data sources may one day be used as or combined with 

government data.  

2.2 Demand for open data is increasing 

As well as being collected more extensively, data is being disseminated more widely. 

Demand for open data in both the private and public sectors is increasing with the 

growing adoption of analytics and data science. Given the demand for data-driven 

decision making, it is no longer appropriate to ensure privacy simply by locking data 

away behind access controls. There is therefore an escalating tension between 

extracting useful insights from sensitive data and protecting individuals’ privacy, 

putting pressure on data privacy techniques to enable privacy and utility 

simultaneously. Even non-sensitive open datasets have a privacy implication: they 

raise the level of background knowledge available to someone conducting privacy 

attacks on other datasets. For example, such datasets may make it possible to identify 

individuals in otherwise anonymised datasets5. This growing risk has been recognised 

by the UK Government Statistical Service (GSS), in their online guidance on SDC 

methods, where it is stated that "Recent technological advances, along with the 

requirement for open data, have dramatically increased the volume of data available 

to companies and individuals. These advances have given the issue of disclosure 

control greater importance, with increasing accessibility translating into higher risk of 

successful identifications from published statistics” [10]. This trend towards more, and 

more open, data necessitates privacy protection that is meaningful in light of 

expanding auxiliary knowledge. 

 

There is widespread recognition of the potential of data-driven societal benefits, 

motivating the move towards open data and greater sharing of data. This desire for 

open data is reflected by the “open by default” approach of the G8’s 2013 Open Data 

Charter (2013), while the UK Digital Economy Act (2017) states that barriers to data 

sharing cause inefficiency and limit the use of data as a valuable asset. A number of 

notable policy papers have echoed this sentiment, but warn too of potential privacy 

concerns. The official 2017 government transformation strategy is focused on better 

                                                
5 How this might happen is discussed below in Section 3: Attacks motivating differential privacy 
research. 
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use of data for the public good, yet acknowledges the need to address privacy 

concerns when doing so [11]. Other examples include a) Professor Dame Wendy Hall 

and Jérôme Pesenti’s AI report [12], which notes that opening up data access is vital 

to improving AI for healthcare and should form a key part of the UK’s AI strategy, but 

that privacy concerns must be adequately addressed in order to do so; and b) the 2017 

life sciences industrial strategy report from Professor Sir John Bell [13], which 

mentions that whilst data can improve research and patient care, privacy is an 

important aspect of enabling data sharing within the NHS.  

 

It is not only official data releases that increase privacy risks. Data breaches have also 

increased the amount of data available [14]. Bad actors may be able to use these 

breached datasets in the same way as official data releases. 

2.3 Privacy attacks are becoming more powerful 

Privacy attacks are becoming more powerful as they are backed not just by richer 

background knowledge from new data sources, but by greater computing power and 

increasingly sophisticated techniques. Below are some examples of innovative privacy 

attacks, of several types, that have been performed in recent years, showcasing the 

overall rise in sophistication: 

● Example 1: De-identified NYC taxi data was re-identified by reversing the 

hashing of direct identifiers with a brute force attack known as a rainbow table 

attack. The taxi rides were then linked to a variety of publicly available data to 

further re-identify the dataset [15]. 

● Example 2: Researchers used neural networks to identify faces in images that 

had been pixelated or blurred in an attempt to de-identify them [16]. 

● Example 3: Robust matching algorithms were used to match sparse de-

identified Netflix user data with IMDb user names, resulting in re-identification 

[17]. 

● Example 4: Re-identification of individuals’ de-identified Twitter accounts based 

on metadata was performed using multinomial logistic regression, random 

forests, and k-nearest neighbor models [18]. 

● Example 5: Researchers demonstrated a reliable method to determine the 

presence of trace amounts (<1%) of an individual’s DNA within a mixture of 

DNA [19]. This is an example of a membership inference attack, discussed in 

Section 3.4, which can lead to sensitive attribute disclosure (e.g. if a DNA 

mixture is of people with a given medical condition, membership in this mixture 

discloses that an individual has the condition). 

2.4 Public concern over threats to privacy is growing  

The general public is becoming more aware of privacy concerns and data misuse, 

meaning societal demands and expectations of data holders or processors are higher 

than ever before. New data privacy laws reflect these sentiments and make stricter 

regulatory demands. The EU’s General Data Protection Regulation (GDPR) has led 
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the way, inspiring similar legislation worldwide, such as the California Consumer 

Privacy Act (CCPA), and moves towards tougher privacy regulations throughout the 

Asia-Pacific region [20].  

 

Meanwhile, in the private sector, the Cambridge Analytica app permissions scandal 

was a heavily covered news story, resulting in Mark Zuckerberg being questioned by 

the US Congress and the EU parliament, as well as being formally summoned to testify 

before MPs at the UK parliament. News stories such as this indicate growing public 

awareness of privacy and security related issues6.  

 

Differential privacy itself is beginning to see adoption in industry, including its well-

publicised use by major technology companies such as Google [21] and Apple [22]. 

2.5 Future-proof privacy protections are desired 

Many traditional SDC methodologies were developed and evaluated in terms of threat 

models detailing what were considered realistic adversaries at the time of their 

development. Such methods risk losing effectiveness over time, either as new 

unforeseen attacks arise, or as the definition of a reasonable adversary becomes 

outdated. Assumptions about current attacker computing power and background 

information mean that defences are likely to be broken in the future, because both 

attacker power and background knowledge will increase. 

 

Data releases can persist indefinitely, and whilst some sensitive information contained 

in such releases becomes less sensitive over time, other information will remain 

sensitive indefinitely. For example, affiliation with religious or activist groups, 

psychiatric treatments, chronic conditions, or personal relationships can remain 

sensitive for many years. Hence, it is not satisfactory to know that sensitive data is 

protected only in the present time of a release. Even assuming what is sensitive and 

what is not can be dangerous: some information that currently seems innocuous may 

become sensitive, either as new attacks emerge or in conjunction with other pieces of 

information. For instance, smart meter data may once have been thought safe, but it 

has now been shown to reveal household occupants’ daily habits, whether specific 

medical devices are in use in the home, and even what TV channel is being displayed 

[23, 24].  

 

There is a comparison to be drawn between future-proof data privacy and future-proof 

cryptography. In cryptography, security parameters such as key length are set with the 

intention of keeping encryption schemes secure not just for the present, but for many 

                                                
6 Public conceptions of privacy and security often conflate these two closely related concepts. We use 
“security” to refer to restricting access to sensitive, or potentially sensitive, data. Relatedly, we use 
“privacy” to refer to allowing selective or specific access to sensitive data (e.g. for analytics), but 
making sure this access (e.g. aggregate statistics returned from analyses run on the dataset) does not 
reveal individuals’ sensitive data. 
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years into the future. For example, NIST recommends considering the expected 

lifetime of data when considering an encryption key size, and makes different 

recommendations if the lifetime extends before or after 2030 [25]. 

3. Attacks motivating differential privacy research  

The previous section demonstrated that today’s world is rich with data and computing 

resources which, as well as providing many benefits, create privacy risk. This section 

outlines some specific classes of attacks against which modern privacy techniques 

should defend. 

3.1 Linkage attacks 

Masking of direct identifiers in row-level data (also known as microdata or record-level 

data) with the aim of de-identification has proven to be vulnerable to re-identification 

through the use of auxiliary data in an attack known as a linkage attack. In a linkage 

attack, quasi-identifiers such as age, gender, and post code are used in combination 

to determine the identity of a de-identified record, by linking to another dataset 

containing the same fields. This type of attack is particularly serious given the wealth 

of rich auxiliary data easily available to adversaries today. In the US, a President’s 

Council of Advisors on Science and Technology (PCAST) 2014 report states: 

“Anonymization is increasingly easily defeated…as the size and diversity of available 

data grows, the likelihood of being able to re-identify individuals … grows substantially” 

[26]. This assertion is backed up by multiple examples of row-level data, deemed to 

be safely ‘anonymised’, later being found vulnerable to linkage attack. 

● Example 1: Latanya Sweeney demonstrated that medical data stripped of direct 

identifiers could be re-identified via linkage with publicly available voter 

registration data. The author suggested k-anonymity as a model of row-level 

privacy [27]7. 

● Example 2: The Netflix prize dataset revealed to be vulnerable to linkage 

attacks based on background knowledge from IMDb, with the authors asserting 

that anonymisation methods such as k-anonymity will fail for sparse, high-

dimensional datasets [17]. 

● Example 3: Australian health records were re-identified via linkage, leading the 

authors to suggest that it is impossible to make a release of record-level data 

that is private without affecting accuracy of results so severely as to render the 

release useless [29]. They suggested releasing aggregate statistics with 

                                                
7 k-anonymity requires that the identifying (or quasi-identifying) information for each person in a 
release should be identical to the respective information of at least k-1 other persons in the release. 
While k-anonymity may protect against some re-identification attacks, data that has been k-
anonymised may remain vulnerable to a host of other attacks, including composition attacks [28]. 
Additionally, k-anonymity can have an unacceptable effect on data utility. This is especially true if 
datasets are high-dimensional. 
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differential privacy as an alternative, because it balances reductions in data 

accuracy with privacy gain. 

3.2 Differencing attacks and other composition attacks 

Contemporary attempts at data privacy have shifted away from releasing de-identified 

microdata (individual record level data) to instead releasing aggregate statistics or 

permitting aggregate queries of datasets [30]. However, aggregate statistics can still 

pose privacy risks and still require privacy techniques to avoid being disclosive. 

 

The simplest form of attack on aggregate statistics is a differencing attack. A very 

simple differencing attack involves finding two groups that differ by one individual and 

using difference in group values to infer an individual’s value. For example, the 

difference in total salary between two groups, where those groups differ by one 

individual, will reveal that individual’s salary. More complex variants exist, using not 

just the difference between two groups, but the differences of multiple groups and 

differences of differences. In practice, attackers able to scan through large numbers 

of statistics can construct attacks based on complex sets of differences. 

 

Even when applying suppression of small-count statistics (e.g. statistics about 1-5 

people), it has been shown via Dorothy Denning’s work on tracker attacks in 1978 that 

singling individuals out from aggregate statistics is still possible [31]. Background 

information/auxiliary information, which yields linkage attacks on row-level data, 

remains an issue for aggregate statistics as it can facilitate the construction of tracker 

attacks. 

 

There are multiple real-world examples of Web-based query systems releasing only 

aggregate statistics being broken by differencing attacks, such as:  

● Example 1: Matthews et al. demonstrated the prevalence of differencing attack 

vulnerabilities in practice [32]. They reviewed multiple US state-level web-

based data query systems allowing interactive query of public health data in the 

US to give flexible tabular outputs. Despite being designed with SDC methods 

in place (e.g. small count suppression), nine systems were found vulnerable to 

differencing attacks. Notably, the authors report that all systems were tested by 

them for a maximum of 30 minutes, demonstrating that sophisticated 

techniques were not required.  

● Example 2: There have been multiple attacks on Facebook users using 

microtargeted advertising, despite Facebook’s internal SDC methodologies, 

which can involve differencing as part of their methodology [33, 34, 35]. 

 

Output perturbation via zero-mean random noise is one method that has been used 

to mitigate differencing attacks. Such noise is randomly drawn each time an aggregate 

statistic is released, giving a different noisy answer for the same statistic. However, 
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this approach is vulnerable to averaging attacks, whereby noise can be averaged out 

across multiple statistics.  

 

A possible means to defend against averaging attacks is to add noise which is 

deterministically calculated from the individuals of a given query set (e.g. which 

individuals are counted in a counting query). This approach is exemplified by the cell-

key perturbation method [36]. This yields the same noisy answer whenever the same 

set of individuals are used in a query, thereby avoiding multiple noisy answers to the 

same query being averaged out. However, deterministic noise addition methods such 

as the cell-key perturbation method are vulnerable to subtle differencing attacks such 

as fishing attacks [37]. Adding in a second layer of noise deterministically based on 

the syntax of queries8, rather than the identities of the individuals contributing to the 

query, might prevent fishing attacks, but this too may be vulnerable to subtler 

differencing attacks or other new classes of attack [37]. Indeed, there is no firm proof 

that subtler differencing attacks won’t or can’t be found. The cycle of new defences 

followed by new workarounds, which started with Denning’s tracker attacks as a 

workaround to small count suppression, is still continuing. 

 

The weakness of any variety of random noise addition is that, regardless of the noise 

added, if too many statistics are released, the true values of the underlying dataset 

can be accurately recovered via reconstruction attacks, which are discussed below. 

Therefore, any variety of noise addition can only avoid the risk of averaging or 

reconstruction attacks provided there is some limit on the number of statistics that are 

released about a given dataset. 

3.3 Reconstruction attacks (aka blatant non-privacy) 

When released summary statistics contain enough information about the underlying 

dataset, an adversary may be able to reconstruct, either exactly or with very high 

accuracy, the entire dataset from these summaries. This is known as a reconstruction 

attack. At the information-theoretic level, even if information is only released in the 

form of aggregate statistics, the more information that is released, the more 

determined the underlying data is. In other words, the set of possible datasets 

consistent with the released information is reduced with each release to the point that 

it is eventually fully determined. For statistics which can be expressed as a linear 

combination of the underlying data, like sums, counts, and averages, there is a general 

purpose reconstruction attack strategy which is to express the statistics as linear 

equations (or linear inequalities) about the individual sensitive variables, and solve the 

resulting system of linear constraints.  

                                                
8 For example, counting the number of individuals of each gender in each department of an 

organisation could be expressed in the SQL query language as “SELECT COUNT(*) FROM dataset 
GROUPBY gender, department”. This statement could be edited to return the same set of people with 
different syntax by adding the (irrelevant) condition “WHERE age<1000”. 
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Even perturbed statistics may be vulnerable to reconstruction attacks. For example, 

Dinur and Nissim showed in 2003 that releasing too many randomly selected statistics 

with high accuracy will allow reconstruction with extremely high probability [3] . This 

result was further strengthened and generalised in follow up work, including Dwork, 

McSherry and Talwar (2007) [38], Dwork and Yekhanin (2008) [39], Choromanski and 

Malkin (2012) [40], and Kantor and Nissim (2013) [41]. The result is informally referred 

to as the Fundamental Law of Information Recovery [42].  

 

There are examples of reconstruction attacks on more than just sum queries. 

Reconstruction is possible, in practice, based on any release of statistics which are 

linear functions of the underlying data or can be expressed as linear. This 

encompasses more complex statistics such as M-estimators and decision 

tree/classifier error rates [43]. 

 

As with differencing attacks, background knowledge can aid reconstruction attacks, as 

it may result in some private information already being known to the adversary, or 

otherwise restrict the set of datasets consistent with the release. Reconstruction attack 

theorems usually make no assumptions on the type of noise which is introduced in the 

computation of the statistics (e.g. whether it is biased or not, or how this noise is 

distributed), only on the magnitude of this noise. This means that, regardless of what 

type of noise has been added, as long as the statistics are accurate enough, 

reconstruction follows9. 

 

The US Census Bureau’s internal experiments have identified reconstruction attacks 

to be a high enough risk to incorporate differential privacy into the SDC methodology 

of the 2020 Census. Specifically, they state that “reconstruction is a serious disclosure 

threat that all statistical tabulation systems from confidential data must acknowledge” 

[44]. They further state that the SDC methodology employed for the 2010 Census is 

not suited to defend against reconstruction attacks, which are the “death knell” for 

traditional data publication systems from confidential sources [45]. 

3.4 Membership inference attacks  

Other attacks on aggregate statistics focus on merely determining whether or not 

someone is in a dataset, which can itself be sensitive. These are known as 

membership inference attacks. Several instances have been shown in practice: a 

membership inference attack on the results of Genome-Wide Association Studies 

(GWAS) has been demonstrated [19], and further extensions have demonstrated that 

this type of membership inference works even when the statistics are noisy [46]. Other 

work demonstrated membership inference on aggregate location data. The 

effectiveness of this particular attack is shown to be increased with background 

                                                
9 An important consequence of a reconstruction attack not making assumptions on the type of noise 
added is their generalit, see [3].  
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knowledge [47]. Membership inference attacks have also been performed on machine 

learning models, whereby an adversary determines whether a given individual’s data 

was used to train a model [48]. 

3.5 Why traditional SDC falls short in defending against these attacks 

Privacy can be hard, or even impossible, to assess empirically: the fact that a system 

designer or tester did not find an attack does not mean that an attack does not exist. 

It is difficult to detect and prevent complex differencing attacks. This is particularly true 

given that there are currently a variety of types of differencing attacks, and it is not 

clear whether a future attack type might be conceived that creates unforeseen privacy 

risk. Such attacks may use independent, uncoordinated releases, which are hard to 

anticipate. Attacks that use external information are hard to design specific defences 

against, as the system designer cannot anticipate the various information sources that 

would be available to a future attacker.  

 

The disclosure risk of multiple uncoordinated releases is hard to monitor, and 

traditional SDC does not provide a calculus for measuring accumulated privacy risks 

across multiple analyses. The existence of reconstruction attacks suggests that the 

output of any algorithm run on a database, even if the algorithm includes noise 

perturbation, will leak some information about the database itself. As more data is 

released, there is an increasing risk that the accumulated information implicates the 

privacy of one or more individuals. Without tracking this accumulated risk, it is unclear 

whether a release is safe or not. These issues can be aggravated when constructing 

more complex analyses or algorithms, such as machine learning models, or when 

making many different types of releases. 

 

Approaches that focus on defending against currently-identified threats are inherently 

poorly suited to defence against unidentified threats or availability of new auxiliary 

knowledge in the future. Auxiliary knowledge will often make attacks on aggregate 

statistics easier, just as it strengthens attacks on row-level data. Any methodology that 

relies on a specific attacker profile (in terms of current availability of auxiliary 

knowledge and current attacks) to assess and mitigate disclosure risk is in danger of 

not being sufficiently future-proof. 

 

Some traditional SDC systems rely on keeping parts of their inner workings secret. For 

instance, the 2010 US Census relied on record swapping, and kept the swap rate 

secret [44]. However, usage of secret parameters or processes introduces a point of 

failure if privacy depends on it. Additionally, a lack of fully public processes can make 

it hard for those using data output to correct for errors or reason about data utility.  

 

To defend comprehensively against reconstruction attacks, one must limit information 

release in a quantified and systematic way that evaluates cumulative risk. No statistical 

disclosure control method can avoid the reality that too many statistics released with 
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too high accuracy may result in a privacy breach. What can be done is to measure and 

evaluate the cumulative risk of outputting the results of statistical analyses on private 

data. This is the approach taken by differential privacy. Treating privacy as a 

consumable resource, this measurement of privacy risk can then be used to guide 

choices about the number and type of statistics to release and the accuracy of these 

statistics. 

3.6 Summary 

The volume of available data is increasing inexorably. Robust and forward-looking 

technology is needed to defend against adversaries who make use of this data in 

combination with sophisticated attack methodologies and increasing computing 

power. Differencing and reconstruction attacks pose a real threat. We therefore need 

a way to reason about privacy in a manner that: 

● Defends against future, unforeseen, attacks. 

● Provides meaningful privacy protection in presence of arbitrary auxiliary 

information. 

● Is transparent, interpretable, and auditable.  

● Cannot be rendered ineffective at a future date via further processing. 

● Allows a formal means by which the increasing risk of reconstruction attacks 

can be bounded when running an analysis or set of analyses on the same data.  

 

Differential privacy was conceived of as a means by which to help address these 

needs. 

4. A technical description of differential privacy 

This section defines differential privacy (with several interpretations, including in both 

everyday and mathematical terms), describes mechanisms which achieve differential 

privacy, and tasks for which differentially private algorithms have been developed. To 

help delineate which use cases are a good fit for differential privacy, the section also 

details the sorts of problems differential privacy is not intended to solve. 

4.1 Background: Previous privacy models and differential privacy 

The search for a good model of privacy has a long history, and the SDC literature 

includes several such models presented in varying levels of accuracy and rigor, the 

most notable being notions of de-identification and k-anonymity10 and Dalenius’ 

definition11 of disclosure [52]. Differential privacy, presented in 2006 by Dwork, 

McSherry, Nissim, and Smith, is the latest of several attempts, and has emerged, in 

                                                
10 These approaches equate privacy protection with preventing an individual's information from being 
linked with the individual. Variants of the approach include k-anonymity, l-diversity [49] and t-
closeness [50]. 
11 Dalenius defines disclosure as follows: “If the release of the statistics S makes it possible to 
determine the value Dk more accurately than is possible without access to S, a disclosure has taken 
place” (Dk refers to the personal information of subject k). See [51]. 
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part, from understanding deficiencies in these models [1, 53]. Differential privacy was 

designed to be a robust, yet achievable, privacy definition. Leading to this definition of 

privacy were a series of works with the goal of putting privacy research on solid 

mathematical grounds [3, 54, 55, 56].  

4.2 Definition of differential privacy 

Differential privacy is a privacy model that bounds privacy risk. It is not itself a method, 

but rather a property that an analysis (or algorithm) may have. Furthermore, differential 

privacy is not a property merely of a particular output of an analysis, but of the 

information relationship the analysis creates between its input and its output. This is 

in contrast to privacy approaches such as k-anonymity that treat privacy as a syntactic 

property of the output12. Rather than a syntactic restriction on the output of an analysis, 

differential privacy is a semantic property of the relationship between analysis inputs 

(e.g. the dataset) and the output distribution, restricting what an observer of the output 

of an analysis may learn about the contribution of any single individual. This restriction 

can be shown, in turn, to relate to a well-defined notion of privacy risk. Furthermore, 

the differential privacy guarantee is a worst-case guarantee as it does not depend on 

the specific inputs or outputs, nor does it depend on the specifics of an attempted 

attack. Differential privacy has a parameter epsilon (ε) which represents the strength 

of the privacy guarantee. The parameter ε is a non-negative numerical value, and can 

be used as a means of quantifying privacy risks. The differential privacy framework 

provides tools for reasoning about how ε changes as a result of multiple uses of 

differentially private analyses. 

4.2.1 An informal presentation of the definition 

Differential privacy formalises the following intuitive view of privacy: the output of an 

analysis should reveal (almost) no information specific to any individual within that 

dataset. By “specific” we mean information that could not be inferred about the 

individual from statistical facts about other individuals. The formalisation requires that 

the outcome distribution of the analysis should remain almost identical whether an 

individual’s information is provided to the analysis or omitted from its input (or 

alternatively, whether an individual's true information is provided to the analysis or is 

replaced by arbitrary values). From the point of view of an individual within the dataset, 

differential privacy guarantees that an analysis will reveal (almost) no information that 

could not be learned about the individual if their information was not used as part of 

the input to the analysis.  

 

                                                
12 By syntactic we mean a property of the output’s format (e.g., that every combination of quasi 
identifiers should appear at least k times). A syntactic property does not have direct implications on 
the informational content of the output. 
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To illustrate, consider two scenarios. In the first, an analysis is run on a dataset with 

Bob’s data included (data present), and in the second, the analysis is run on a 

hypothetical dataset which differs from the real one only in that Bob’s data is not 

included (data absent)13. Differential privacy states that the outcome distribution of the 

analysis will be approximately the same in each scenario, and therefore very little 

information specific to Bob can be learned from the outcome of the analysis. This 

guarantee that the analysis’ outcome should be (almost) independent of Bob’s data 

applies not only to Bob, but to each individual in the dataset. 

 

Ideally for privacy, the outcome distribution of the analysis would be identical in the 

data present and data absent scenarios, as this would mean that the outcome of the 

analysis is independent of any individual’s input. However, such a strict requirement 

would rule out producing any utility from the data14. This is why differential privacy 

allows for some discrepancy between the output distributions in the data present and 

data absent scenarios, and the differential privacy guarantee is that the two scenarios 

are almost indistinguishable. Any observer considering the data present and data 

absent scenarios cannot, given a sample of the outcome of the analysis, distinguish 

with too high certainty which scenario generated this outcome. This allowed 

discrepancy is quantified by a parameter usually denoted by ε. To see why having 

identical output distributions destroys utility, note that if the output distributions were 

identical with and without Bob’s data, then Bob’s data must be irrelevant to the analysis 

and can be deleted without consequence. By similar argument, all other persons’ data 

could be deleted without consequence. And so clearly, if all the data can be deleted 

from a data analysis without consequence, the data analysis cannot be meaningful [5].  

 

The differential privacy guarantee is achieved by means of adding uncertainty into the 

outcome of an analysis, often in the form of noise perturbation. The perturbation 

magnitude affects the level of privacy protection, in terms of how similar are the 

outcome distributions in the presence and absence of an individual’s data. It also 

affects the accuracy of the computed analysis. As a rule of thumb, achieving a higher 

level of privacy (i.e. more similar outcomes in the presence or absence of any single 

individual’s data) requires adding a higher level of noise and hence results in a lesser 

accuracy. Although differential privacy requires adding uncertainty, note that there are 

usually other sources of uncertainty in an analysis already, such as sampling error and 

collection errors. In many use cases, the uncertainty needed for differential privacy is 

less than these other types of uncertainty. 

 

                                                
13 Note that these “data present” and “data absent” scenarios are hypothetical: differential privacy is 
unrelated to actually giving data participants opt-in/opt-out controls. 
14 As discussed below, if an analysis outcome is independent of any individual’s input then the 

analysis must ignore its entire input and hence no utility is produced regardless of how utility may be 
defined in specific settings. The issue of ensuring acceptable utility is discussed in Sections 5.3.2 and 
6.3.3. 
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The differential privacy guarantee of near indistinguishability between the data present 

and data absent scenarios is preserved even with arbitrary background knowledge 

[57]. In particular, even if every other individual’s information is revealed to the 

adversary, the outcome of a differentially private analysis would still not reveal whether 

Bob’s information was included. This means that the only information that can be 

learned about Bob is information that can be revealed about him from other individuals’ 

information. Information that is specific to him would not be revealed. Consider, for 

example, the case where the number of people with a particular medical condition is 

released. An adversary is unsure only of whether Bob has the condition, but she knows 

that there are 42 people other than Bob with the condition. If the released count under 

differential privacy is 43, she cannot be sure whether this increase is due to Bob having 

the condition or due to the noise perturbation added, as the outcome 43 is almost as 

likely whether he has the condition or not. She might be able to work out that Bob is 

likely to have the condition based on who else does (e.g. if there emerges a correlation 

between certain traits and the condition), but then this knowledge is not due to Bob’s 

inclusion in the release.  

 

Furthermore, the differential privacy guarantee continues to hold even if Bob 

participated in several analyses satisfying the differential privacy guarantee. This 

important property of differential privacy, composition, is discussed in more detail 

below. 

4.2.2 The mathematical formulation 

Let X be an arbitrary data domain, and let T be an arbitrary output domain. A 

randomised algorithm mapping a dataset to output  satisfies ε-differential 

privacy if for all dataset pairs  where  and  differ by a single entry, and for 

all subsets S of the output domain T: 

  

, 

 

where the probability is over the randomness of the algorithm A [1]. 

 

In this sense, ε>0 measures privacy risk as the information leakage of an analysis, as 

it sets a bound on the probability change across all possible outcomes of an analysis. 

At most, the probability of any one outcome can change by a factor of . 

 

From the point of view of an individual in the dataset, one of the two datasets (  and 

) can represent the data as supplied to an analysis (the individual’s data present 

scenario) and the other can represent the data in a thought experiment where the 

individual’s information is omitted or arbitrarily changed (the individual’s data absent 

scenario). The parameter ε therefore bounds how much the individual’s information 

may affect the outcome of the analysis. In turn, this is a proxy for how much their 

individual privacy might be impacted by this analysis. This view neatly mirrors the 
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perspective an individual might take if they were deciding whether or not to contribute 

their data to a particular analysis, or whether or not to contribute their true information. 

The differential privacy guarantee is a worst-case guarantee in the sense that it holds 

for every possible dataset and holds no matter what background information the 

attacker may have.  

 

From the point of view of the entity running the algorithm and potentially responsible 

for protecting the privacy of the contributing individuals, ε bounds the maximum 

amount by which the probability of an outcome could change if any single individual’s 

data were not included15. This “worst-case” guarantee is taken across all individuals 

and possible datasets and ensures that everyone is protected. 

 

A larger value for ε means less privacy, whilst smaller ε means more privacy. In 

particular, setting ε=0 we get =1 and hence such setting corresponds to requiring 

that no individual’s input should have any effect on the outcome, in which case we get 

perfect privacy but (as discussed above) no utility. With increasing values of ε, the 

bounds on the probability distributions, obtained by applying the analysis A on the 

neighboring databases  and , become more relaxed. This corresponds to allowing 

specific information about individuals to be leaked with less uncertainty. This relaxation 

also allows for extracting more utility from the underlying data. At ε=infinity, the 

differential privacy requirement is void - it is satisfied by any analysis, privacy 

preserving or not. The question of choosing a value for ε is hence a question of trading 

off utility and privacy - while a small value for ε such as 0.01 or 0.1 is desirable, setting 

ε to be this low can sometimes result in loss of utility, especially with smaller dataset 

sizes. Some real world implementations have reported using ε to be in the range of 1-

10. The construction of differentially private algorithms for a variety of tasks is subject 

to significant research effort. The principal aim of such research is improve the privacy-

utility trade-off of differentially private algorithms so as to allow use of lower values of 

ε while maintaining an acceptable accuracy of the analysis. 

4.3 Fundamental properties: post-processing, composition, group privacy 

Differential privacy has several appealing properties not found in older conceptions of 

privacy. These properties facilitate both reasoning about privacy and the construction 

of sophisticated differentially private algorithms from simpler building blocks.  

 

Consider a transformation consisting of first applying an ε-differentially private analysis 

A on the input and then applying an arbitrary transformation B on the resulting 

outcome. The resulting transformation which we will denote  is also ε-

                                                
15 Note that this refers to a change in probability distributions of the output. The algorithms are 
randomised, so they may output a different result each time. 
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differentially private. This property is resilience to post-processing16. It implies that the 

output of a differentially private analysis can be reused for a variety of purposes without 

creating additional privacy risk17. We emphasise that these guarantees hold even 

when the details of the analysis A, the transformation B, and the value of ε are made 

public18. We also note that while the application of the transformation B on the outcome 

of A cannot affect privacy adversely, certain transformations can sometimes result in 

improved privacy (i.e. a lower ε).  

 

As a general rule, privacy risk will accumulate across multiple data releases, and 

differential privacy is equipped with tools for reasoning about this accumulated risk 

[58]. For example, the composition of two differentially private analyses with 

parameters ε1 and ε2 respectively can be viewed as a single differentially private 

analysis, and the resulting privacy parameter is bounded by ε1 + ε2. This robustness 

under composition means that privacy risks of multiple analyses can be bounded.  

 

A consequence of composition is that the total desired ε can be treated as a “privacy 

budget” and consumed in parts by each individual data release. This budget can be 

thought of as analogous to any other budget. If the analyst has £500 to spend on all 

analyses overall, then they could perform 5 analyses at £100 each. Similarly, if the 

analyst requires an overall ε = 0.5, they could perform 5 analyses at ε=0.1 each. This 

ε budget can be split unevenly in the same manner as any budget, allowing fine tuning 

of noise addition across analyses. Most other privacy frameworks do not allow for such 

compositional reasoning. Differential privacy’s compositional bounding of risk based 

on ε means that going over budget (i.e. returning a set number of statistics in a 

differentially private manner to give an overall ε, then returning more statistics) does 

not mean that the dataset is open to immediate attack. Instead, it means that the 

overall level of ε has increased, and the privacy guarantee has weakened in a 

measurable way. 

 

Sometimes, differentially private releases compose better than this simple additive rule 

dictates. For example, if a histogram is released where bin counts correspond to 

disjoint subsets of individuals, each bin count can be assigned the full privacy budget. 

Put another way, a disjoint histogram where each bin count has budget ε has an overall 

budget of ε too. This improved composition rule is known as parallel composition. 

                                                
16 Resilience to post-processing is analogous to the data processing inequality from information 

theory. The data processing inequality states that the information content of a signal cannot be 
increased via its processing. 
17 One particular application is when an outcome of the differentially private analysis may contain 
inconsistencies or negative counts due to noise addition. While experts can take the noise into 
account in their analyses, agencies may choose to modify the public facing releases by making them 
consistent, or by replacing negative counts with zeros.  
18 In particular, the guarantees of differential privacy described in this and the following section would 

continue to hold when the transformation B is a privacy attack, and even if B implements 
computational methods unknown or unavailable at the time when the differentially private analysis A 
was designed and implemented. 
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It should be noted that some of the variants of differential privacy (discussed in the 

section below, “Variants of differential privacy”) allow for improved (sub-additive) 

composition (i.e. for N analyses with budget ε their overall budget is less than Nε and 

closer to sqrt(N)*ε) by virtue of more efficient composition theorems existing for these 

variants. 

 

Differential privacy can allow reasoning about the privacy of groups as well as 

individuals: for all datasets x, y that differ on at most N entries, and for all subsets S of 

the outcome space, it holds that  

 

 
 

This implies that the privacy guarantees that apply to an individual with the privacy 

parameter ε apply to a group of size N with the privacy parameter becoming Nε. The 

property of group privacy allows one to define a level of protection for families, for 

instance. 

 

This combination of properties allows for complex analyses to be built up from well-

understood differentially private primitives, and the risk to privacy can still be formally 

reasoned about even in the face of multiple complex analyses being performed on the 

same dataset. 

4.4 Interpretations of the definition 

Differential privacy can be interpreted as providing plausible deniability to individuals 

whose personal information is used in an analysis. This is in the sense that the output 

of the analysis does not allow an observer to distinguish whether a particular individual 

provided truthful or false inputs, or whether they participated in the analysis or not. 

This is because differential privacy requires that the observed outcome (i.e. one point 

on the outcome probability distribution) would be almost as probable (within a factor 

of ) regardless of whether a given individual gives their real input or replaces it with 

an arbitrary value, or whether they do or do not participate in the analysis. 

 

The parameter ε can be related to bounding the privacy risk due to an individual’s 

participation in an analysis in the sense that the probability of any event can change 

by a factor of at most  due to the inclusion of the individual’s information in the 

analysis. Consider for example an individual who is worried that the inclusion of her 

medical information in an analysis may adversely affect her chances of obtaining a job 

position. If the analysis is differentially private, then the chances of not obtaining the 

position can grow by a factor of at most  when compared to when the same analysis 
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is performed with the individual’s information excluded19. Similarly, the chances of 

obtaining the position can diminish by a factor of at most . 

 

In this way, the parameter ε can be thought of as bounding privacy loss. Setting of ε 

(i.e. the upper bound on privacy loss) is a policy decision that should be guided by a 

technical understanding of what such a decision would mean in terms of changes to 

privacy risk and utility of the analysis. The parameter ε can be shown to bound the 

vulnerability to reconstruction attacks, as a dataset can never be more accurately 

reconstructed than allowed by ε, a property that extends into the future regardless of 

auxiliary knowledge and attacker capabilities20. 

 

Comparing the privacy guarantee offered by differential privacy with that traditionally 

sought by SDC methods, we note that traditional disclosure risk assessment is often 

based on specific assumptions made about the data itself (e.g. that it is sampled from 

an i.i.d. distribution) and, furthermore, assumptions on the attacker’s knowledge and 

methods. In contrast, the differential privacy guarantee is made without needing to rely 

on any such assumptions. The differential privacy guarantee is made in terms of 

comparing an individual’s risk with and without her information being included in the 

analysis. This differential privacy guarantee does not directly relate to ensuring that an 

individual’s secrets would not be disclosed, and indeed information about the 

individual could be disclosed if this information can be learned by observing the 

information of other individuals21. The guarantee, however, ensures that information 

that is specific to the individual, i.e., information that cannot be learned about her 

unless her information is included, would not be revealed. 

 

Abowd and Schmutte have suggested an economic interpretation of differential 

privacy, with privacy protection and statistical accuracy as social goods [59]. In their 

interpretation, the fact that increasing privacy (i.e. lowering ε) means reduced utility is 

phrased as a resource allocation problem where an optimal choice of ε depends on 

weighing demand for statistical accuracy (i.e. utility) against privacy. This is an 

excellent example of how differential privacy opens up the possibility of reasoned 

balancing of privacy and utility at a policy level, and of how differential privacy can be 

connected to other disciplines. 

                                                
19 For a more detailed example of how the parameter ε can be related to privacy risk see [5]  
20 To see how choice of ε is related to protection against reconstruction attacks consider an ε-
differentially private mechanism that is executed on dataset x where every entry is chosen at random 
from the data domain X. Note that if we replace an entry xi in x with a x’i which is randomly selected 
from X then the mechanism cannot reveal any information about xi and hence a reconstruction 
attempt would guess xi correctly with probability 1/|X|. It follows from the definition of differential 
privacy that when the mechanism is applied on the unmodified x the reconstruction of the i-th entry 
can succeed with probability at most eε/|X|. 
21 For example, if a study shows that smokers are more prone to lung cancer, then this would be 
learned about individuals whether they participate in the study or not.  
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4.5 Variants of differential privacy 

The definition presented above is often referred to as pure differential privacy. Several 

newer variants of ε-differential privacy have been proposed since 2006, each of which 

conveys a slight relaxation of the original formal requirement (that no outcome should 

change in probability by an amount more than ). These variants have been devised 

principally to improve the privacy-utility trade-off of differential privacy. That is, a 

stronger privacy guarantee with the same level of utility, or a higher level of utility for 

the same privacy guarantee. They can be particularly important for use cases in which 

the noise added by traditional ε-differential privacy for the desired ε level affects utility 

too much. Variants typically consider a slightly weaker guarantee than ε-differential 

privacy, and thereby require less noise. These variants include approximate 

differential privacy [60], concentrated differential privacy [61, 62], and truncated 

concentrated differential privacy [63].  

 

Approximate -differential privacy is a variant that has received significant research 

attention. It includes a second parameter, delta ( ). It states that, for some >0:  

 
 

This additional  allows for a probability of approximately  that the likelihood ratio 

between the data present and data absent scenarios will be higher than . That is, 

with a probability of approximately , a given outcome can become more or less 

probable, between the data present and absent scenarios, by a factor greater than . 

Where this is the case, approximate differential privacy does not place a bound on 

how much greater than  this factor can be. The parameter  is typically chosen to be 

very small: significantly smaller than 1/N where N is the number of people whose data 

is in a dataset [58]. Approximate differential privacy can be interpreted as allowing for 

privacy breaches to happen with extremely small probability , akin to the accepted 

practice in cryptography of allowing for security breaches to happen with negligible 

probability. 

 

Approximate differential privacy allows for added utility, leveraging noise addition 

techniques that do not satisfy pure differential privacy, as well as more efficient 

composition theorems than are possible for pure differential privacy.  

 

One early example of approximate differential privacy being used in practice is the 

work of McSherry and Mironov, who created a  differentially private recommender 

system based on Netflix data [64]. Their assessment of the algorithm showed good 

utility, above that of the Cinematch baseline offered by Netflix. Additionally, Rinott et 

al. have discussed how approximate differential privacy might be applicable to 

releasing perturbed frequency tables with truncated cell perturbations of the sort 

suggested by the Australian Bureau of Statistics’ Table Builder project, in order to 

increase utility [65]. 
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4.6 Differentially private mechanisms and algorithms 

This section details some mechanisms for achieving differential privacy, and some 

example tasks to which they have been applied. 

 

Randomised response is a technique presented by Warner in 1965 as a way for 

respondents to answer sensitive or stigmatising survey questions while maintaining 

their privacy [66]. It is mostly useful for answering questions with binary Yes/No 

answers, and confidentiality is achieved by the respondent flipping her answer with a 

fixed probability. It is straightforward to show that if the flipping probability is set to 

1/(1+eε) then ε-differential privacy is achieved. For example, setting the flipping 

probability to 33% corresponds to having ε = ln 2. Over a large population, this 

randomisation is averaged away and trends emerge. Randomised response underlies 

current implementations of differentially private analysis by Google and Apple. Google 

has published a system for telemetry based on randomised response called RAPPOR, 

which it uses for privacy-preserving telemetry in Google Chrome [21]. More broadly, 

the scenario where individuals add noise before submitting their data, so as to ensure 

they obtain the differential privacy guarantee for themselves, is referred to as the “local 

model”. Local differential privacy mechanisms have the benefit of not requiring the 

analyst to be trusted, hence their appeal in industry. However, they have worse 

privacy-utility trade-offs than differential privacy mechanisms computed on data held 

centrally by a trusted curator (a setting referred to as the “curator model”). Local 

differential privacy mechanisms are effective mostly when there are very many data 

subjects [67].  

 

Protecting summary statistics, such as sums, counts, and histograms, can be done 

with the Laplace mechanism [1]. This mechanism perturbs output by adding random 

noise that is calibrated to a property of the approximated statistic called “global 

sensitivity”. Global sensitivity of a function f mapping databases into a real number is 

the amount that any single individual can influence the output of the function f: 

 

 
 

where the maximum is taken over all datasets x, y that differ on a single entry. For 

example, the sensitivity of count queries is 1, because a single individual can affect a 

count by at most 1 by being present or absent in the query set22.  

 

The Laplace mechanism adds noise, drawn from a Laplace distribution, to the output 

of a function f of a dataset23. These functions could be, for example, count queries or 

                                                
22 This notion can be generalised to functions that map databases into points in the d-dimensional 
Euclidean space: Δf = max|f(x) - f(y)|1 where |.|1 denotes the 1-norm. 
23 The Laplace distribution, denoted Lap(λ), is a continuous probability distribution with probability 

density function h(z)=1/(2λ) e(-|z| / λ). 
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machine learning training algorithms. The Laplace distribution is centred at 0 and has 

scale where  is the global sensitivity of the function. This means that with 

increasing values of ε the variance of the distribution is smaller (i.e. less noise is 

added), which corresponds to larger values of ε meaning less privacy in theory. 

Smaller ε yields higher variance and therefore more noise, which corresponds to more 

privacy. Similarly, smaller ε means less utility, whilst larger ε means the opposite. 

 

 
 

Differential privacy via the Laplace mechanism is illustrated in the above figure. In this 

example, consider a function f that outputs the number of people who have a given 

medical condition in Bob’s data present scenario (dataset y, f(y) = 43) and data absent 

scenario (dataset x, f(x) = 42). The Laplace mechanism A releases these counts with 

noise drawn from the Laplace distribution parameterised by . Visualised in blue 

and red, respectively, is the probability that A(x) and A(y) will output a particular value 

for the number of people with the medical condition. For example, the probability that 

the value output in Bob’s data present scenario P[A(y) = 44] is found where the line x 

= 44 intersects the red distribution, and likewise for P[A(x) = 44] and the blue 

distribution. The Laplace mechanism satisfies the requirements of differential privacy 

because, for all possible values v that could be output by A, the ratio of P[A(y) = v] to 

P[A(x) = v] is between e-ε and eε 24. 

Intuitively, the noise added in the Laplace mechanism masks the additive contribution 

of any single individual to the function f, hence the noise is calibrated in proportion to 

the largest possible individual additive contribution . A smaller ε (better privacy) 

results from a higher noise magnitude, hence the inverse proportion of privacy to ε 25. 

Tuning the noise added to an algorithm’s sensitivity in this manner can intuitively be 

understood as masking the contribution of any one individual. It has been formally 

proved that adding Laplace noise calibrated to sensitivity in this manner satisfies ε-

differential privacy. 

 

                                                
24 More accurately, the probability of any event can change by a factor of at most eε between Bob’s 
data present and data absent scenarios. Here, an event occurs when the output of A falls within some 
(measurable) set such as an interval or a union of intervals. For example, the ratio of the probabilities 

P[A(y) ∈ [44, 45]] and P[A(x) ∈ [44, 45]] is bounded between e-ε and eε. 
25 For the simple proof formalising this intuition see [1]. 
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The Gaussian mechanism [58] is similar to the Laplace mechanism, with the following 

differences: it uses Gaussian noise instead of Laplace noise and achieves 

approximate differential privacy [60] instead of pure differential privacy. 

 

In addition to these broadly applicable standard techniques (Randomised Response, 

Laplace mechanism, and Gaussian mechanism), there are a number of state of the 

art differentially private algorithms that attempt to achieve an optimal privacy-utility 

trade-off for specific tasks. For example, there are differentially private algorithms that 

produce categorical output [68], synthetic datasets [69], and algorithms that train 

machine learning models [70] (e.g. clustering [71], linear regression [72], and 

classification [73]). 

 

Differentially private synthetic data sets, also referred to as private data releases, are 

row-level datasets produced from sensitive data, such that they maintain much of the 

statistical structure of the original data while preserving differential privacy. Some 

synthetic data generation procedures involve creating a statistical model of the dataset 

and sampling rows from that model. A critical difference between traditional and 

differentially private ways of doing so is that traditional techniques provide a heuristic 

notion of privacy and hence carry a risk that the resulting dataset may allow an attacker 

to learn information which is specific to rows in the original dataset (e.g. by first learning 

the model from the synthetic rows, then the original rows from the model) [74]. If the 

model is learned with differential privacy then the released synthetic data provably 

protects against an attacker learning specific information about rows in the original 

dataset26. It may therefore be beneficial to consider releasing differentially private 

synthetic data where organisations currently use traditional synthetic data techniques.  

4.7 Scope of differential privacy usage 

Differential privacy is not intended for de-identifying row-level datasets, but works 

instead on releasing aggregate statistics, like summary statistics, or publishing 

synthetic datasets27. Essentially, differential privacy hides the presence or absence of 

any individual row, where rows can correspond to an individual. This rules out 

specifying any information about single rows.  

 

Differentially private algorithms work best in circumstances when data exists in 

abundance, and in particular when the noise added for achieving differential privacy is 

comparable to, or dominated by, other statistical errors (e.g. due to sampling and 

measurement). In such cases, the use of differentially private algorithms may benefit 

utility as they would allow use of data that would otherwise need to be redacted. 

                                                
26 In this situation, generation of the model itself is differentially private, whilst sampling from the 
model and releasing synthetic data is post-processing (which does not adversely affect the differential 
privacy guarantee). 
27 From the perspective of differential privacy, machine learning models are another type of aggregate 
statistic because, much like summary statistics, they represent data about groups rather than about 
individuals. 
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Examples of tasks that can be performed with large datasets include summary 

statistics, distribution learning, generation of synthetic databases, learning of 

classifiers, and clustering. On the other hand, it is immediate from the definition of 

differential privacy that when applied to very small databases (the extreme example 

being a dataset of only one person), differentially private algorithms would not yield a 

good privacy-utility trade-off.  

 

Differential privacy inherently limits how much information can be extracted from 

datasets. In particular, differential privacy may not be achievable in use cases where 

synthetic datasets cannot be used and a dataset needs to be queried repeatedly and 

without limit, because such usage of the dataset may lead to the possibility of a 

reconstruction attack. It is worth noting that the framework of differential privacy may 

still be useful in providing weaker notions of privacy in some of these use cases. For 

example, if the data consists of events generated by individuals over time, then it may 

be possible to use differentially private computations to protect each of the events 

generated by each individual (called event privacy), but the overall nature of the activity 

of individuals may be revealed.  

5. How differential privacy fits in with traditional SDC approaches 

The previous sections outlined the contemporary context which has motivated the 

development of differential privacy, and described differential privacy itself. We now 

compare and contrast differential privacy with pre-existing SDC methods. 

5.1 Similarities of traditional SDC methods and differential privacy methods 

Differential privacy can in fact be viewed as a logical continuation of traditional SDC 

methods, of which noise perturbation is already a variety. Differential privacy adds to 

the progression of SDC methods a formal manner of reasoning about privacy loss, 

which in turn yields a rich variety of perturbation techniques. Furthermore, some 

specific SDC techniques can be analyzed through the lens of differential privacy and 

hence find their way into differentially private algorithms. Most prominently, 

randomised response, which was introduced over 30 years ago, is used as a building 

block in current large scale implementations of differentially private analyses including 

Google’s RAPPOR differential privacy system and Apple’s implementation of 

differential privacy. 

 

Crucially, both traditional SDC and differential privacy methods may be subject to 

reconstruction attacks if too many statistics are released. For both traditional SDC and 

differential privacy methods, releasing the output of any useful analysis, even if 

perturbed, inherently involves an increase of disclosure risk, which grows with an 

increasing number of releases. An important advantage of differential privacy is that it 

provides a calculus for reasoning rigorously about this accumulated risk, whereas 

most or all traditional SDC methods do not exhibit such a calculus.  



 
 

27 
 

5.2 Benefits of differential privacy over traditional SDC 

Differential privacy has certain benefits that distinguish it from traditional SDC. These 

are listed below: 

 

Better quantification of privacy loss: Using analyses that satisfy differential privacy 

allows access to a rigorous framework in which privacy loss can be reasoned about 

and quantified. For example, knowing that any analysis leaks information, differential 

privacy quantifies this amount, even taking into account multiple analyses on the same 

dataset. This ability to formally quantify and track privacy risks from an analysis, or 

even across a set of analyses, is increasingly important for any privacy-aware 

organisation working with sensitive data. As there is a measurable and interpretable 

quantity, ε, to work with, agencies are able to make a quantifiable statement about 

individuals’ expectations of privacy. Additionally, ε is associated with a specific level 

of noise perturbation added to the analysis. This means that the distortion level applied 

to the data can be mapped to utility within the specific definition of utility according to 

the use case. This allows informed balancing of privacy against data utility 

considerations. 

 

Privacy risk metric reliant on few assumptions: Unlike differential privacy, traditional 

SDC methodologies are not founded on an easily quantifiable definition of privacy that 

is tied to individuals’ expectations of privacy. Measures of disclosure risk do of course 

exist for traditional SDC, but are typically tied to assumptions about the adversary in 

terms of prior knowledge and attack methodologies [65]. Differential privacy’s 

guarantee is agnostic to these attacker profile considerations. Realistically, then, the 

alternative with traditional SDC is a labour-intensive process of manually assessing 

risk that is less quantifiable. 

 

Additionally, because differential privacy ensures that an analysis output is 

indistinguishable from the case where any single person’s entire record had been 

absent from the input, differential privacy renders it unnecessary to decide which part 

of a data record is sensitive and which part is identifying. This is safer because judging 

sensitivity and identifiability is fallible, given that sensitivity and background knowledge 

levels change over time. 

 

Better future-proofing: Many traditional SDC methods were conceived of to defend 

against attacks and background knowledge available at the time. That is, their ability 

to mitigate disclosure risk depends on assumptions about the attacker profile. This 

inherently limits the period for which they’re effective, and they can be broken by newly 

discovered attacks or new auxiliary knowledge on the part of an adversary. In contrast, 

as discussed in Section 4.3, differential privacy is maintained under post-processing 

and hence an attack applied on the outcome of a differentially private analysis cannot 

break the differential privacy guarantee.  
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Public parameters: Traditional SDC methods often keep their parameters secret for 

security purposes, and this is common practice in statistical agencies. For example, 

the US Census kept their rate of record swapping secret in the last Census [44]. In 

fact, the US Census described their statistical disclosure avoidance process before 

differential privacy as having “aspects of the black arts,” in that “knowledge of the 

actual disclosure avoidance techniques and parameters was restricted to a small 

group of specialists, and the remainder of the agency treated disclosure avoidance as 

a black box that input dangerous data and output clean, safe data” [75]. It is better to 

have parameters public because: 

● Understanding of how risk composes across multiple analyses on the same 

underlying data is facilitated. 

● Security-through-obscurity means that the public cannot scrutinise the 

protection method, and a point of failure is introduced. 

● Incorrect conclusions from the released data are less likely to be caused by 

perturbation, as this perturbation can be known and accounted for. Indeed, if 

noise of a known distribution is added, it is possible for those making use of 

outputs from differentially private analyses to correct for the noise [76]. 

 

Synergy with protections against overfitting: The emphasis of differential privacy on 

preserving group insights can encourage good statistical practices. Use of noise to 

obscure individual contributions avoids overfitting and spurious results, but group 

trends and findings are preserved. In machine learning terms, this can be restated as 

“differential privacy helps avoid overfitting” [77], but more generally can be thought of 

as: if a finding is robust and genuine, then it should be robust to a small amount of 

random perturbation [78]. 

5.3 Current challenges to differential privacy and SDC 

5.3.1 Determining acceptable privacy risk and setting parameters 

It is not agreed upon, or fully understood, what ε should be set at to provide an 

acceptable level of privacy. The parameter ε bounds worst-case privacy loss, but how 

that relates to practical risk in real-world use cases is still an area of research. 

Differential privacy practitioners are building up experience which will provide insight 

on this issue in years to come. Academic papers typically use example ε’s in the 0.01 

- 1 range. However, industry implementations so far have set ε in the range of 1 - 10 

(Apple set ε to 2, 4, and 8 in different applications [79]; Google uses ln(3)≈1.1 [80]; 

Census OnTheMap used 8.99 [81]). Using high ε’s weakens the worst-case guarantee 

of differential privacy, but leaves in place other desirable properties of differential 

privacy such as composability, transparency and quantifiability of privacy risk. Some 

work has done using auction theory to set ε, but this is based on the assumption that 

individuals must be compensated for their privacy loss, which is often not true in 

practice [82].  
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In contrast, because traditional SDC methods have been around for longer, there is 

more experience built up about how to translate between acceptable privacy loss at a 

practical level and at the level of method parameters. However, as discussed above, 

traditional SDC methods have been shown vulnerable to attack in spite of this 

accumulated experience in setting parameters.  

5.3.2 Ensuring sufficient utility 

Differential privacy has been criticised as having overly punitive effects on utility28 

compared to traditional SDC methods [83, 84]. These criticisms may stem from the 

impression that in many real world applications getting a low ε involves adding a lot of 

noise. In truth, differential privacy is a tunable model and there is a privacy-utility trade-

off which can swing fully in both directions (i.e. maximising utility vs. maximising 

privacy). This re-expresses the problem of understanding whether higher values of ε 

(i.e. more utility) offer some degree of safety. Additionally, differential privacy’s concept 

of a privacy budget may be seen as limiting use of data in ways traditional SDC does 

not. This view is, however, incorrect: all SDC techniques must limit use of data or else 

they will be vulnerable to reconstruction attacks. Differential privacy just makes this 

limit explicit. 

 

Furthermore, differential privacy as a theory allows the privacy-utility trade-off to be 

formally understood in terms of ε, but the balance of these two factors is not dependent 

solely on the differential privacy approach itself, but rather the particular algorithm or 

mechanism employed and the particular use case. Past research has optimised the 

privacy-utility trade-off for specific use cases, and future research may lead to lower 

values of ε for the same utility in a broader variety of use cases, as well as improved 

algorithm-selection criteria or guidance.  

 

All traditional SDC methods also have a privacy-utility trade-off. For example, when 

using small count suppression, raising suppression threshold improves privacy but 

harms utility as more statistics get suppressed. The key contrast with differential 

privacy is that for many traditional SDC methods the levels of privacy and utility 

provided are not as easily measurable as with differential privacy. 

5.3.4 Ensuring consistency among statistics and avoiding negative counts 

Because differential privacy adds noise to statistics, it can lead to situations where 

statistics are inconsistent. One example is simply regenerating precisely the same 

statistic, which may result in a different answer due to differentially private algorithms’ 

                                                
28 Utility can be considered as informational content. Attempting to maximise utility by this definition is 
likely synergistic with any higher-level concept of utility, and this discussion applies to any definition of 
utility. However, it is worth being aware that the definition of utility as a practical concept, embodied by 
the simple question “is this noisy data still useful?”, will depend on the intended use of the data. The 
possible need to assess utility via an appropriate metric is discussed in Section 6.3.3. 
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randomised nature29. Another example is the accuracy of table marginal counts. For 

instance, a differentially private release may say that there are 47 men with diabetes, 

53 women with diabetes, and 99 people total with diabetes. Some efforts have been 

made to create differentially private mechanisms that can enforce consistency [85, 86]. 

It should be noted that creating differentially private synthetic data, and subsequently 

using that synthetic data to generate statistics, is always consistent. The US Census 

is taking this approach [75]. 

 

Similarly, the noise addition required to achieve differential privacy can sometimes 

lead to unexpected statistical estimates, such as when counts become negative 

because of noise addition. Negative counts can, however, be post-processed and 

replaced with zeros without adversely affecting privacy (though this may cause bias in 

the overall data release). Alternatively, certain differentially private algorithms, like 

synthetic data generation algorithms, avoid the issue of negative counts. 

 

Consistency and negative counts are not differential privacy-specific problems as 

some traditional SDC methods suffer from the same problems (for instance, cell key 

perturbation). Teaching data analysts to better manage noisy statistics would benefit 

them whether using differential privacy or traditional SDC methods. In particular, 

analysts should be aware that some existing statistics software may not produce 

correct answers if fed inconsistent data or data with negative counts. 

5.3.5 Impact on statistical tests 

Problems can arise when taking statistics generated from a differentially private 

mechanism and performing a statistical test directly on them. For instance, running a 

chi-squared independence test on noisy counts will not give accurate p-values. There 

is currently active research on methods to perform statistical tests under differential 

privacy [87, 88].  

 

For SDC methods, as with consistency, this problem is method dependent. Any 

method (traditional or differentially private) that involves perturbation of data can alter 

some correlations between variables and can affect statistical tests. Given these 

possible effects on statistical tests, the fact that differentially private methods are 

public and have public parameters is especially advantageous, because the effects on 

the statistical tests can be fully understood and accounted for.  

5.3.6 Time-series data and releases over time 

Most differentially private mechanisms are intended to work on rectangular data where 

there is one row per person. Much data nowadays is time-series data which is of higher 

dimensionality and where an individual row could correspond to an event, such as a 

                                                
29 It should be noted that this example is illustrative and is a poor use of privacy budget in practice. 
Identically re-querying an unchanging dataset still comes at a cost the overall privacy budget as it 
makes averaging attacks possible. 
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transaction, and an individual may appear in multiple rows. This data necessitates 

different approaches from the majority of those considered in differential privacy 

research. For instance, one must decide whether to protect each event or each 

individual. Additionally, multiple releases over time - where there are correlations 

between releases - pose similar problems. For instance, what happens if a data point 

hardly varies at all over time and is included in many sequential releases? There has 

been some work in this area, but there are currently no mature solutions [89, 90]. 

 

Most traditional SDC methods (record swapping, small count suppression) are also 

intended to work only on rectangular data and single releases. They too, therefore, 

run into some of the same issues as differentially private methods when dealing with 

non-rectangular datasets which may involve time-series data.  

5.3.7 User education 

As differential privacy has only a few real-world deployments so far, analysts in general 

are less familiar and less comfortable with the techniques used to achieve it. This issue 

becomes more pronounced as differentially private algorithms become more complex. 

Users need to understand differential privacy in terms of what it means when they 

receive differentially private noisy statistics, how to select between different 

differentially private algorithms, and how to determine whether a use case is suitable 

for differential privacy. Security and privacy departments, whether in academia or in 

government, need to be educated on the privacy benefits of differential privacy, its 

limitations, and how to set and interpret parameters. 

 
Since traditional SDC methods are older, analysts are more familiar with them and 

there is widespread experience in their use. However, the ability to understand the 

effectiveness of these techniques is limited because of their heuristic nature. 

6. Applications of differential privacy 

Having explained the context and details of differential privacy, including its 

relationship to other SDC methodologies, we now turn to a discussion of applying 

differential privacy in practice. In this section, we outline how differential privacy might 

be useful to statistical agencies, some different pathways towards differential privacy 

adoption, some practical strategies in coping with the challenges it faces, and some 

general principles of good practice when using differential privacy. 

6.1 Differential privacy for statistical agencies 

Government statistical agencies may find differential privacy a valuable tool for several 

reasons. First, national statistics (that is, statistics about the population of a country) 

usually have large sample sizes. This is beneficial, because statistical releases about 

larger populations can achieve a given value of ε with less impact on accuracy.  
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Second, the transparency of differential privacy (i.e. that all details of the differentially 

private mechanism can safely be made public) is a benefit to statistical agencies. Use 

of public parameters and noise addition mechanisms enables recipients of national 

statistics to take noise perturbation into account. The transparency allows the effects 

of noise perturbation to be managed properly: for instance, the confidence intervals of 

each statistic can be calculated. An additional benefit of the open nature of differential 

privacy is that the public, including the academic community, can fully audit the data 

privacy mechanisms in place. This allows for verification of privacy protection and 

engenders public trust. If a national statistical agency were to suffer a privacy attack, 

it might risk loss of public trust and reputational damage. While this risk is not entirely 

avoided with differential privacy (e.g. incorrect implementations, poor selection of ε, 

and allowing for unlimited queries could each still lead to disclosure), the risk is 

mitigated if ε and the differentially private implementation are chosen transparently 

and with input from the public.  

 

Third, the differential privacy guarantee is especially suitable when data is released to 

the public (e.g. online). In such cases, the data is likely to be exposed to adversaries 

who can execute advanced and evolving privacy attacks. Being future proof, 

differentially private algorithms defend against vulnerabilities that could emerge with 

the use of heuristic SDC approaches [91]. 

 

Fourth, many of the statistics published by government agencies are summation and 

counting queries, which have received a lot of attention in the differential privacy 

research literature and have mature differentially private mechanisms with good 

privacy-utility trade-offs. In particular, advanced approaches for differentially private 

histograms have been developed, improving on the privacy-utility trade-offs of the 

simple approach of adding Laplace noise to each bin. Collaborative academic work 

undertaken by the US Census Bureau has yielded algorithms for releasing workloads 

of counting queries (i.e. contingency tables) over high-dimensional data with improved 

privacy-utility trade-off and scalability [92]. The same programme of collaboration has 

yielded efficient differentially private algorithms for counts of counts (e.g. for every 

output area, count how many households contain x people, for different values of x) 

[93]. 

 

Fifth, statistical agencies generally have a clearer idea than other organisations of a 

specific, finite set of statistics they want to release. This is beneficial because 

differential privacy cannot easily handle systems that answer infinite different queries: 

either the finite ε privacy budget will be overspent and the desired level of privacy will 

not be achieved, or the budget will have to be split, possibly unevenly, between so 

many queries that the resulting high level of noise destroys utility30. Indeed, no SDC 

method that releases useful results can release such results indefinitely without being 

open to reconstruction attack. 

                                                
30 Note: this would also require knowing how many queries were to be asked in advance. 
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The fit of differential privacy to national statistics use cases has been investigated by 

others. Rinott and et al. published work in 2018 on the applicability of differential 

privacy to table builder tools at the US Census Bureau and Australian Bureau of 

Statistics [65]. They state several key requirements of a system releasing frequency 

tables that can be achieved under differential privacy, including preservation of 

structural zeros, unbiased perturbations, and truncated output based on bounded 

absolute difference between original and perturbed values (at the cost of moving from 

pure to approximate differential privacy). Their work highlights the fact that differential 

privacy is a fitting privacy model for national population statistics. 

  

The good fit between differential privacy and national statistics does not, of course, 

guarantee that differential privacy will always apply to national statistics use cases 

problem-free. Common challenges to adopting differential privacy, such as setting ε, 

educating users in how to account for perturbations, and ensuring consistency, will still 

require work to overcome. 

6.2 US Census case study 

The US Census Bureau has conducted internal experiments confirming that 

confidential microdata from the 2010 Census can be reconstructed quite accurately, 

and they now state publicly that reconstruction attacks are a recognised vulnerability 

for census releases [45, 94]. Motivated by this issue, they have adopted a new 

differentially private mechanism for statistical disclosure control in the 2020 Census 

[44]. This mechanism was purpose-built for the US Census in order to have a strong 

privacy-utility trade-off while satisfying certain census-specific requirements. At a high 

level, the mechanism starts by creating a differentially private histogram of 

demographic attributes and sampling the right number of rows to create a synthetic 

dataset. It then iteratively assigns the rows to a state, county, tract, and block. This 

results in hierarchical tiers of geographic attributes, which is desired. The US Census 

was actually an early user of differential privacy with the OnTheMap project in 2008 

[95]. That project opted for approximate differential privacy, as it provided better utility. 

However, the 2020 Census will use pure differential privacy. 

 

The US Census Bureau is actively engaged in addressing the challenges of applying 

differential privacy in practice. At the time of writing, it is unclear exactly how they will 

set ε, but they have said that a policy committee (the Data Stewardship Executive 

Policy Committee), not technical staff, will decide on the value of ε. It is likely that 

committee thinking will be informed by Abowd and Schmutte’s recent work on privacy 

and utility as public goods [59]. The Census Bureau chose a differentially private 

mechanism that produces synthetic data, rather than one that produced statistics 

directly, because synthetic data files can work with legacy software and ensure 

consistency. This minimises the disruption of introducing a new SDC methodology. 

They have given several educational presentations, both internally and externally, 
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about differential privacy and the reasons why it was chosen. These reasons are 

principally that a) it’s easy to understand, b) the privacy guarantee is both provable 

and tunable, c) the privacy guarantee does not depend on assumptions about external 

data, d) reconstruction attacks are defended against, and e) the guarantee is 

composable across multiple releases [44]. 

 

A key challenge the Census Bureau will face when applying differential privacy is 

managing the privacy budget, which equates to setting the noise level such that the 

Census has acceptable levels of both utility and privacy. To address concerns about 

utility, they’ve educated users that every mechanism has a privacy-utility trade-off, and 

that differential privacy simply exposes this trade-off explicitly, with public parameters 

[94]. They also plan to reserve some privacy budget for the publishing of accuracy 

information at the end of the process, helping with post-hoc interpretation of 

differentially private statistics [44]. To our knowledge, at the time of preparing this 

document they have not yet publicly addressed the question of statistical tests done 

on Census data releases. 

 

The Census Bureau has tailored their mechanism to the specifics of their use case, in 

order to achieve better privacy and utility. For instance, it is a legal requirement that 

the Census report correct block-level populations, which are used to calculate things 

like the number of Representatives apportioned to each state. The Census 2020 

mechanism therefore ensures that some statistics are preserved exactly, while others 

are perturbed with noise addition. On this front, they are actively engaged in 

collaborations with differential privacy academics from a range of institutions such as 

Colgate University, Penn State, Duke University, the University of Massachusetts, 

Georgetown University, Harvard University, Boston University, and Purdue University. 

Such collaborations allow the Census Bureau to expand their expertise and address 

challenges specific to their use case. Academic publications resulting from their joint 

work can be publicly scrutinised, improving the quality of and encouraging confidence 

in their methods. 

 

The 2020 Census may be just the start of differential privacy usage at the Census 

Bureau. Garfinkel, Abowd, and Powazek write, “Beyond the 2020 Census, the Census 

Bureau intends to use differential privacy or related formal privacy systems to protect 

all of its statistical publications.” They write of differential privacy that “[t]he methods 

put in place for the 2018 and 2020 implementations will act as templates, greatly 

easing its adoption in future statistical projects,” highlighting the long-term value of the 

first major differential privacy deployment. And, despite the challenges associated with 

the first deployment, they believe that the Census Bureau will be rewarded: “With 

skilled staff and effective methodology in place, differential privacy can make lasting 

improvements to privacy protection at the federal government’s largest statistical 

agency” [75]. 
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6.3 Where and how to start applying differential privacy 

This section discusses some pathways to differential privacy application, detailing 

types of use case well suited to an initial deployment of differential privacy in any 

organisation. Also covered are practical strategies for addressing differential privacy’s 

challenges and general best practices when applying differential privacy. 

6.3.1 Path to deployment A: Differentially private synthetic data 

One potential pathway to effectively deploying differential privacy is to use differentially 

private synthetic data. In many cases where microdata is used for analysis, synthetic 

data can be substituted for the microdata directly. Additionally, existing non-

differentially private synthetic data release use cases can also be replaced by 

differentially private synthetic data releases, which may be beneficial because 

releasing synthetic data without any perturbation can still be disclosive. Synthetic data 

is derived from statistics about the original data, and poorly protected synthetic data 

can reveal these statistics which in turn can reveal original records [74].  

 

There are several practical advantages of beginning the adoption of differential privacy 

with a synthetic data use case. Differentially private synthetic data can be very useful 

for organisations which already have pipelines and processes in place to manage row-

level data, and can facilitate the uptake of differential privacy as a means of thinking. 

Importantly, query results are the same every time, as no noise is added past the stage 

of creating the data. This means there is no confusion caused by inconsistent results. 

A synthetic dataset can be queried indefinitely to give aggregate statistics and, 

because of differential privacy’s post-processing property, no further privacy risk is 

incurred. 

 

One simple way to implement differentially private synthetic data generation for a 

counting query use case is by expressing the data as a differentially private histogram, 

and then sampling rows from this histogram. For example, consider an illustrative 

simple dataset about gender, where there are 100 people: 60 females and 40 males. 

This data can be expressed in a histogram. Then the Laplace mechanism can be used 

to make a differentially private, noisy histogram. Say the noisy histogram listed a 66 

frequency for female and a 39 frequency for male. Finally, rows can be sampled from 

this histogram - the resulting dataset will have a female-to-male ratio of approximately 

66:39. The resulting synthetic data retains the approximate pattern of the original 

dataset, but is differentially private. Several more sophisticated algorithms for synthetic 

data generation have been published (e.g. MWEM [69] and PrivBayes [96]), and the 

US Census Bureau will shortly publish their synthetic data generation algorithm 

developed for the 2020 Census. 

 

As with releases of aggregate statistics, differential privacy allows, via setting ε, 

balancing of privacy and utility for synthetic data. Similarly, it also allows measurement 

and tracking of privacy risk across several releases of synthetic data in the same 
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manner as any other aggregate statistics. However, extra care must be taken when 

considering utility for synthetic data. Synthetic data embeds patterns from the original 

data, but not all patterns, and the recipient of the synthetic data may not realise which 

patterns are and are not embedded. If they query the synthetic data for a statistic that 

was not preserved in the synthetic data generation process, they risk getting a very 

inaccurate result [97]. Furthermore, they may not realise this is happening. Thus, those 

using the synthetic data must be careful not to query it in a way not intended by the 

data holders. 

6.3.2 Path to deployment B: Noise addition on aggregate statistics 

An alternative route to differential privacy adoption is to add differentially private noise 

to a release of aggregate statistics. This can be done, for example, by using the 

Laplace mechanism for sum and count queries. As before, it is easiest to choose a 

use case of count queries, as count queries are currently best understood and handled 

in differential privacy. 

 

The best use cases to begin with consist of releases of fixed, known-in-advance sets 

of statistics. There are many of these use cases in government: for instance, the 

Department for Education releases the same (or very similar) tables about looked-

after children every year [98]. These tables break down counts of looked-after children 

by several attributes, including category of need and ethnic origin. Having fixed 

statistics is important because, as stated previously, it is impossible have an unlimited 

number of queries, as incremental risk of reconstruction cannot be avoided.  

 

Once a set of count or sum statistics is chosen, the Laplace mechanism can be 

straightforwardly applied to add noise to the statistics. In order to apply the Laplace 

mechanism, however, a value for ε must be chosen. Each ε value translates to a 

magnitude of noise, so the distortive effects of the noise on the statistics can be 

analysed before releasing the statistics. There are a number of more advanced 

algorithms than simple addition of Laplace noise independently to each aggregate 

statistic, such as the Matrix mechanism for count statistics [99]. Choice of algorithm is 

discussed further below (“Practical strategies for addressing the challenges of 

differential privacy”). 

 

When releasing the statistics, the data holder can include information about the 

distortion, such as confidence intervals. This information allows the recipient of the 

noisy statistics to understand how accurate each statistic is. 

 

Lastly, it is advisable to manage all such releases of differentially private statistics 

centrally, so that the composition effects of multiple statistical releases can be tracked. 

For instance, if ten total releases are going to be made, it may make sense to use one 

tenth of the total desired ε on each release. Whichever strategy for managing the 
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privacy budget is chosen, it is helpful to track all statistical releases through the same 

centrally managed system.  

6.3.3 Practical strategies for addressing the challenges of differential privacy 

The challenges of using differential privacy in practice are discussed above. This 

section covers some practical measures to manage those challenges. 

 

One practical approach to checking that a set value of ε gives the required level of 

privacy in a practical sense is to attempt to attack a differentially private statistical 

release with differencing and reconstruction attacks. This is a heuristic approach to 

tackling a key question: will an adversary be able to learn anything they shouldn’t from 

these noisy statistics? This allows translation of an ε-differential privacy guarantee into 

a practical understanding of the likelihood of disclosure at this ε level. This approach 

is heuristic in the sense that whilst such an approach will reveal when a chosen ε is 

too large to be an effective privacy protection, it will not reveal if this value of ε is 

smaller than required. Stated otherwise, this intruder testing can prove the presence 

of a vulnerability, but cannot prove the absence of all vulnerabilities. In spite of its 

imperfections, intruder testing has already been used for traditional SDC approaches 

[100]. One way to structure intruder testing is to run a public bug bounty-style contest 

where anyone can attempt to attack a sample dataset. Another is to perform this 

internally, although this does not allow for public verification. Any indication that a given 

ε is “safe” (i.e. prevents attacks in practice) will depend on the quality of attacks 

leveraged, and such a challenge should therefore use as wide an array of up to date 

attacks as possible.  

 

Similarly, as differentially private analyses often come with metrics about the accuracy 

of each statistic they produce, it is beneficial to consider whether these accuracy levels 

are practically acceptable for the use case at hand. That is, is the distortion low enough 

to make the data release useful in practice? For example, if the data is being used for 

a city planning project, will the city planners draw the same conclusions from it? 

Considering these questions will lead to a better analysis of the privacy-utility trade-off 

that differential privacy offers, and inform a better choice of ε.  

 

Education about the meaning of the differential privacy guarantee is essential. This 

should be tailored to the audience, and likely involves translating the ε parameter into 

something more intuitively understandable for a given audience. Those who are 

deciding whether to contribute to the dataset would likely prefer an explanation in 

terms of the minimal increase in risk that results from their data being included in the 

analysis. However, statisticians and analysts making use of the dataset would likely 

prefer explanations in terms of privacy budget in order to spend this budget wisely in 

their analysis, and in terms of distortion in order to understand effects on statistical 

tests. In some cases, it may well be worth holding back some privacy budget to publish 

information as to the accuracy of differentially private summary statistics, or to provide 
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some guidance about the accuracy of analyses performed on synthetic data [101, 

102].  

 

Large sample sizes improve the privacy-utility trade-off of differential privacy, and very 

small sample sizes may have unworkable privacy-utility trade-offs. This is because the 

risk of attacks such as reconstruction relates to the size of the dataset: as the number 

of statistics released, relative to dataset size, increases, more noise must be added to 

counter the growing risk of attack. For this reason, if there are many more statistics 

being published than people in the sample, the privacy-utility trade-off may be 

unworkable. As stated above, this is not just true for differentially private techniques, 

but for all SDC techniques. The precise relationship between number of statistics and 

privacy-utility trade-off is nuanced and dependent on factors such as query type. For 

instance, an especially high number of statistics can be published from a dataset if 

they are all counting queries. As a general rule, the larger the ratio of population to 

statistics, the better the privacy utility trade-off. Indeed, for most differentially private 

algorithms performing on a set number of statistics, having a larger dataset with the 

same ε is functionally equivalent to having a larger ε with the same dataset (i.e. less 

noise) [103]. Education about designing and performing differentially private analyses 

is therefore also important: analysts should be aware of these issues and exercise 

restraint in which statistics they choose to include in an analysis. 

 

Applying differential privacy in practice means deciding which differentially private 

mechanism or algorithm is optimal for the task at hand. This involves discovering what 

is the best utility that can be achieved for a set value of ε. A broad selection of state of 

the art differentially private algorithms exist for a number of specific tasks. Selecting 

which is most appropriate in a given situation can be facilitated by starting with the 

simplest algorithms, and only moving towards more complex ones if a simpler 

approach does not give an acceptable privacy-utility trade-off for the specific situation. 

It should also be noted some differentially private algorithms (e.g. some synthetic data 

generation algorithms such as MWEM) involve free parameters, and that careful free 

parameter tuning can often improve utility. Research into the best method of algorithm 

selection is underway, with formal algorithm benchmarking frameworks being 

developed [103].  

  

Currently, few broadly-applicable libraries or products for differential privacy are 

available. Applying differential privacy in practice often involves some software 

development, and this is more likely when moving beyond simpler algorithms. This 

could involve adapting existing algorithms to the specific use case, or developing new 

ones in-house. However, conducting bespoke development, possibly in collaboration 

with differential privacy researchers, can enable use-case specific improvements to 

the privacy-utility trade-off, as exemplified by the case of the US Census. Because 

differential privacy research is a young field, differential privacy expertise is currently 

concentrated primarily in academia, with smaller, but growing, communities in 

government and industry. 
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Lastly, it can be useful to post-process differentially private statistics with techniques 

like small count suppression for practical benefit. One useful pattern is applying the 

Laplace mechanism to a statistical release of count statistics, and then suppressing 

small counts: this retains full differential privacy protections, but improves the statistical 

release’s ease-of-use, because it suppresses the statistics that are likely most 

distorted by differentially private noise addition and least useful, thus leaving only the 

most reliable statistics. Suppressing these least reliable statistics also reduces the size 

of the data release, leading to faster processing and less memory usage. 

6.3.4 Best practices in differential privacy application 

This section contains some suggested best practices when using differential privacy. 

These originate partially from Dwork’s work with the Commission on Evidence-based 

Policymaking [104]. The first is to establish a set of differentially private mechanisms 

and get them approved externally. This may involve open sourcing code for core 

differential privacy primitives, similar to the OpenSSL library. Open-source 

differentially private mechanisms will speed differential privacy adoption, reduce 

duplicated work, and increase confidence that differential privacy is being 

implemented correctly. Where possible, bespoke developments in applying differential 

privacy to a given use case should also be made public, in order to build up a public 

library of useful differentially private algorithms and reduce future overhead of fitting 

differential privacy to a given application. 

 

Another best practice is to make ε, and the ε selection process, public. This aids the 

conversation around how to take differential privacy from theory to practice, and 

engenders public trust. There are currently few examples of how ε values have worked 

in practice, and sharing knowledge about what works and what does not aids in the 

process of making differential privacy more effective in practice. Publicising chosen 

values of ε sets public benchmarks of privacy-utility trade-offs to be matched and, 

eventually, surpassed. In terms of publicising the selection process, one method of 

selecting ε (as described above, “Practical strategies for addressing the challenges of 

differential privacy”) is to use intruder testing methodologies; if this method is used, 

the methodologies could be publicised for similar reasons. 

6.4 Existing differential privacy tools 

Here we present a (non-exhaustive) list of some of the major public differential privacy 

tools, which may be useful to differential privacy practitioners as references. It should 

be noted that there are also some commercial differential privacy products available. 

 

● Google’s RAPPOR [80].  

● PINQ [105] (and its extension wPINQ [106]). 

● Harvard Privacy Tools project: Private data Sharing Interface (PSI [87]).  

● GUPT [107]. 
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● FLEX [108]. 

● Diffpriv R toolbox [109]. 

7. Conclusion 

Traditional SDC methods are being strained by increasing data volumes and powerful 

privacy attacks. In particular, reconstruction attacks call into serious question the 

abilities of traditional SDC methods to prevent unintended disclosure. This article 

presents differential privacy as a new alternative to replace or complement existing 

SDC methods, one that promises more robust privacy protection and novel capabilities 

for managing risk and increasing transparency. We recommend that organisations (i) 

identify the settings where differentially private methods may provide benefit over SDC 

techniques and (ii) conduct pilot deployments of differentially private methods, building 

expertise for wider deployments in the future.  

7.1 Benefits of differential privacy 

Differential privacy has several distinctive characteristics that benefit all stakeholders: 

data subjects, data holders (e.g. statistical agencies), and data users. 

 

Differential privacy provides a mathematical guarantee about the privacy afforded to 

each data subject in a data analysis. The guarantee has a compelling intuitive 

interpretation: informally, each individual’s information is protected (almost) to the 

extent it would be protected had this individual’s data been retracted from the analysis. 

The additional risk that an individual may incur in a differentially private computation 

(as compared with retracting their data) is quantifiable. Furthermore, this risk can be 

quantified across multiple differentially private releases. 

 

The privacy guarantee of differential privacy is unconditional as it does not depend on 

any assumptions about the attacker’s strategy. In this sense, differential privacy 

counters not only known attack types such as reconstruction, but also future, not yet 

known attack types. This reduces the risk of reputational damage to statistical 

agencies that may arise from unintended disclosures, as well as the risk of harm to 

individuals.  

 

In contrast to some traditional SDC methods, the privacy guarantees of differentially 

private analyses are maintained even if their algorithms are disclosed in full. This 

allows statistical agencies to benefit from increased transparency, as they can publicly 

release full details of algorithms and implementations. This transparency enables 

external scrutiny of the validity and appropriateness of the methods employed and 

their implementations. This engenders public trust and supports collaboration between 

statistical agencies, the public, and academia. 
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The transparency of differential privacy, and the fact that its parameters (like ε) can be 

safely published, means that those using the data have a clear understanding of how 

data has been treated to control disclosure, including the type and magnitude of noise 

introduced. This understanding can help prevent data users from drawing incorrect 

inferences or conclusions.  

7.2 Challenges to adopting differential privacy 

Differential privacy is a relatively new concept, and deploying differentially private 

technology in the real world requires addressing some practical challenges.  

 

Organisations must develop a satisfactory processes for configuring differential 

privacy (e.g. setting its parameter ε which governs the strength of the privacy 

protection) such that their data releases are both useful and of acceptably low privacy 

risk. Setting ε properly involves understanding the real-world impact of noise addition 

in the context of each relevant use case. It also involves understanding how differential 

privacy conforms with legal and ethical privacy standards. 

 

At this early stage of deploying differential privacy, organisations will also face the 

difficulty of finding or training qualified personnel to help reason about, design, build, 

and verify the validity of differentially private algorithms. Selecting or designing the 

best differentially private mechanism for each use case is crucial to attaining a good 

privacy-utility trade-off. Importantly, organisations will also need to invest in educating 

data holders, data analysts, and even data subjects about differential privacy. 

Collaboration among government, industry, and academia is key to addressing these 

challenges effectively. 

7.3 Recommended next steps 

This document is intended as an introductory step to understanding differential 

privacy, its strengths, and its limitations. For organisations who need to protect privacy 

in statistical releases, we recommend the following next steps: 

 

● Gauge the risk of reconstruction attacks, and other state of the art privacy 

attacks, in existing statistical releases, taking into account the number of 

releases from the same source data and the existence of publicly available 

databases. Focus first on tools such as flexible table builders that release many 

statistics. 

 

● Identify use cases suitable for piloting differential privacy. Examples include 

releases of descriptive statistics (e.g. frequency tables), where differentially 

private algorithms will fit with existing data analysis pipelines and cause minimal 

disruption. Consider lower-sensitivity datasets as good candidates for a first 

differentially private analysis in order to gain experience with differential privacy 

without undue disclosure risk. 
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● Engage with policymakers, legal scholars, differential privacy researchers, and 

other relevant stakeholders in order to start a wider discussion around what is 

an appropriate level of privacy protection. 

 

● Strengthen relationships with differential privacy communities in academia and 

industry, as a way to influence research in directions that are relevant for the 

statistical agency (e.g. toward supporting weighted data or time-series data) 

and to more effectively bridge the gaps between the theory and practice of 

differential privacy.  

 

With these steps, organisations can begin to use differential privacy for more robust 

and transparent privacy protection, to address existing vulnerabilities, and to prepare 

themselves for new privacy challenges ahead. 
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8. Recommended reading 

Ordered from general to technical:  

 

Garfinkel, S., Abowd, J. and Powazek, S. (2018). “Issues Encountered Deploying 
Differential Privacy.” ArXiv, September 6, 2018. 
https://doi.org/10.1145/3267323.3268949 
 

● A recent account of issues in deploying differential privacy at the US Census 

and the reasons for pursuing it despite the challenges. 

 

Nissim, K., Steinke, T., Wood, A., Altman, M., Bembenek, A., Bun, M. et al. (2018). 
“Differential Privacy: A Primer for a Non-Technical Audience,” 2018. Harvard Privacy 
Tools Group. Accessed 10 October 2018. 
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-

audience-preliminary-version.  
 

● A primer describing differential privacy with minimal technical language but 

with accuracy. 

 

Heffetz, O. and Ligett, K. (2014) “Privacy and Data-Based Research.” Journal of 

Economic Perspectives 28, no. 2, May 2014, 75–98. https://doi.org/10.1257/jep.28.2.75. 

 

● An introduction of differential privacy with focus on empirical economic 

research. 

 

Dwork, C., McSherry, F., Nissim, K, and Smith, A. (2017) “Calibrating Noise to 

Sensitivity in Private Data Analysis”. Journal of Privacy and Confidentiality 7 (3), 17-

51, 2017. https://doi.org/10.29012/jpc.v7i3.405. 

 

● An updated version of the paper that originally introduced differential privacy. 

Provides a general background for the concept. 

 

Dwork, C., and Roth, A. (2014). “The Algorithmic Foundations of Differential 

Privacy.” Foundations and Trends in Theoretical Computer Science 9, no. 3–4 

(August 11, 2014): 211–407. https://doi.org/10.1561/0400000042. 

 

● A detailed mathematical introduction to the theory of differential privacy. 

 

Vadhan, S. (2017). “The Complexity of Differential Privacy.” In Tutorials on the 

Foundations of Cryptography: Dedicated to Oded Goldreich, edited by Yehuda 

Lindell, 347–450. Information Security and Cryptography. Cham: Springer 

International Publishing, 2017. https://doi.org/10.1007/978-3-319-57048-8_7. 

 

● A concise review of theoretical results in differential privacy focusing on 

computational and sample complexity of various fundamental tasks. 

https://doi.org/10.1145/3267323.3268949
https://doi.org/10.1145/3267323.3268949
https://doi.org/10.1145/3267323.3268949
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-audience-preliminary-version
https://privacytools.seas.harvard.edu/publications/differential-privacy-primer-non-technical-audience-preliminary-version
https://doi.org/10.1257/jep.28.2.75
https://doi.org/10.1257/jep.28.2.75
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/978-3-319-57048-8_7
https://doi.org/10.1007/978-3-319-57048-8_7
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